ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
S.D. Harkness, J. A. Tesk, Che-Yu Li
Nuclear Technology | Volume 9 | Number 1 | July 1970 | Pages 24-30
Fuel Cladding Model | Symposium on Theoretical Models for Predicting In-Reactor Performance of Fuel and Cladding Material | doi.org/10.13182/NT70-A28724
Articles are hosted by Taylor and Francis Online.
A model has been developed for the evolution of voids and dislocation loops during fast neutron irradiation of austenitic stainless steel. The model is based on a thermodynamic approach that calculates void nucleation and growth rates in terms of the supersaturation of vacancies and interstitials. It is recognized that the steady-state point-defect concentrations decrease with fluence as the result of the creation of additional sinks (voids and loops). The ability to monitor both the microstructural development and the steady-state concentrations of defects allows discussion of the in-pile mechanical properties. The yield strength of austenitic stainless steel is expected to increase rapidly during irradiation at 400°C due to the effectiveness of voids and dislocation loops as obstacles to dislocation motion. Irradiation at 600°C is predicted to result in a slowly increasing yield strength. In-reactor creep behavior is discussed in terms of a climb-controlled model for a dispersion strengthened system. Radiation-enhanced climb is expected to predominate at lower temperatures and stresses over the thermal climb component. Discussion of the possible effects of neutron flux and fluence on the in-pile steady-state creep rate is also included.