ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
My story: Stanley Levinson—ANS member since 1983
Levinson early in his career and today.
As a member of the American Nuclear Society, I have been to many conferences. The International Conference on Probabilistic Safety Assessment and Analysis (PSA ’25), embedded in ANS Annual Meeting in Chicago in June, held special significance for me with the PSA ’25 opening plenary session recognizing the 50th anniversary of the publication of WASH-1400, which helped define my career. Reflecting on that milestone sent me back to 1975, when I was just an undergraduate student studying nuclear engineering at Rensselaer Polytechnic Institute (RPI) in Troy, N.Y., focusing on my mechanics, fluids, and thermodynamic classes as well as my first set of nuclear engineering classes. At that time—and many times since—the question “Why nuclear engineering?” was raised.
S.D. Harkness, J. A. Tesk, Che-Yu Li
Nuclear Technology | Volume 9 | Number 1 | July 1970 | Pages 24-30
Fuel Cladding Model | Symposium on Theoretical Models for Predicting In-Reactor Performance of Fuel and Cladding Material | doi.org/10.13182/NT70-A28724
Articles are hosted by Taylor and Francis Online.
A model has been developed for the evolution of voids and dislocation loops during fast neutron irradiation of austenitic stainless steel. The model is based on a thermodynamic approach that calculates void nucleation and growth rates in terms of the supersaturation of vacancies and interstitials. It is recognized that the steady-state point-defect concentrations decrease with fluence as the result of the creation of additional sinks (voids and loops). The ability to monitor both the microstructural development and the steady-state concentrations of defects allows discussion of the in-pile mechanical properties. The yield strength of austenitic stainless steel is expected to increase rapidly during irradiation at 400°C due to the effectiveness of voids and dislocation loops as obstacles to dislocation motion. Irradiation at 600°C is predicted to result in a slowly increasing yield strength. In-reactor creep behavior is discussed in terms of a climb-controlled model for a dispersion strengthened system. Radiation-enhanced climb is expected to predominate at lower temperatures and stresses over the thermal climb component. Discussion of the possible effects of neutron flux and fluence on the in-pile steady-state creep rate is also included.