ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
T. T. Claudson, R. W. Barker, R. L. Fish
Nuclear Technology | Volume 9 | Number 1 | July 1970 | Pages 10-23
Fuel Cladding Model | Symposium on Theoretical Models for Predicting In-Reactor Performance of Fuel and Cladding Material | doi.org/10.13182/NT70-A28723
Articles are hosted by Taylor and Francis Online.
Fast-neutran irradiations in the EBR-II have been completed an biaxial stress rupture, creep, and tensile specimens of AISI 304 and 316 stainless steel. Postirradiation test results show that irradiations in the 480 to 650°C range to fluences of 1 × 1022 n/cm2 (E > 0.1 MeV) substantially reduce the time-dependent rupture life and ductility of these materials. Tensile ductility is also severely reduced. Bulk-density measurements and electron-microscopy examinations on specimens of annealed 304 from EBR-II core components and mechanical property specimens have been made for fluence levels to 7 × 1022 n/cm2 and at temperatures in the 360 to 470°C range. Both the bulk-density measurements and microscopy examinations correlate well and indicate that volume changes of 4% can be expected under these conditions. The temperature and fluence dependency for annealed 304 stainless steel has been determined and can be expressed as: The mechanisms responsible for the observed degradation of mechanical properties and metal swelling are being studied. Some observatians are presented. However, as yet, no adequate nucleatian and growth model has been determined to enable an acceptable extrapolatian of these data-to-goal fluence levels to be achieved in Liquid Metal Fast Breeder Reactor core companents or fuel-pin cladding.