ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
T. T. Claudson, R. W. Barker, R. L. Fish
Nuclear Technology | Volume 9 | Number 1 | July 1970 | Pages 10-23
Fuel Cladding Model | Symposium on Theoretical Models for Predicting In-Reactor Performance of Fuel and Cladding Material | doi.org/10.13182/NT70-A28723
Articles are hosted by Taylor and Francis Online.
Fast-neutran irradiations in the EBR-II have been completed an biaxial stress rupture, creep, and tensile specimens of AISI 304 and 316 stainless steel. Postirradiation test results show that irradiations in the 480 to 650°C range to fluences of 1 × 1022 n/cm2 (E > 0.1 MeV) substantially reduce the time-dependent rupture life and ductility of these materials. Tensile ductility is also severely reduced. Bulk-density measurements and electron-microscopy examinations on specimens of annealed 304 from EBR-II core components and mechanical property specimens have been made for fluence levels to 7 × 1022 n/cm2 and at temperatures in the 360 to 470°C range. Both the bulk-density measurements and microscopy examinations correlate well and indicate that volume changes of 4% can be expected under these conditions. The temperature and fluence dependency for annealed 304 stainless steel has been determined and can be expressed as: The mechanisms responsible for the observed degradation of mechanical properties and metal swelling are being studied. Some observatians are presented. However, as yet, no adequate nucleatian and growth model has been determined to enable an acceptable extrapolatian of these data-to-goal fluence levels to be achieved in Liquid Metal Fast Breeder Reactor core companents or fuel-pin cladding.