ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
William F. Naughton, William A. Jester
Nuclear Technology | Volume 9 | Number 6 | December 1970 | Pages 851-855
Analysis | doi.org/10.13182/NT70-A28716
Articles are hosted by Taylor and Francis Online.
A pulsed-neutron activation analysis system capable of handling and analyzing short-lived radioisotopes with half-lives as short as 1 to 2 sec was developed. Since a single reactor pulse will induce more activity for short-lived neutron reaction products than continuous irradiation to saturation at a normal reactor power level, experimental procedures were formulated to analyze quantitatively a few important fast neutron reactions with short-lived products and to establish limits of detection for these reactions using this system. To augment the fast neutron reactions, a cadmium-lined in-core terminus was utilized to reduce (n,γ) interference reactions.
The reactions analyzed were 16O(n,ρ)l6N,19F(n,α)16N, 19F(n,γ)20F, 23Na(n,ρ)23Ne, 23Na(n,α)20F,34S(n,ρ)34P, and 31P(n,α)28Al. The detection limits which were attained for these reactions utilizing this system were: 54.8 µg for 16O, 0.23 and 0.19 µg for 19F, 1.8 and 8.0µg for 23Na, 150 µg for 34S, and 2.6 µg for 31P. Most of these limits are an order of magnitude or more lower than those reported by users of the Cockroft-Walton neutron generators usually employed for these analyses.