ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Harold E. Clark, Grover Tuck
Nuclear Technology | Volume 9 | Number 6 | December 1970 | Pages 814-820
Chemical Processing | doi.org/10.13182/NT70-A28713
Articles are hosted by Taylor and Francis Online.
An empirical formula has been developed for determining the individual diameter of essentially unreflected cylinders in a critical planar array. The formula is. The independent variables are N, the number of cylinders in the array; S, the edge-to-edge spacing between adjacent cylinders; H, the solution height in the array; C, the concentration of the solution [U ∼93 wt% 235U]; G, the geometry factor determined by the shape of the array; and ki (i = 1, 2, ... , 8), the constants determined by the type of solution, either uranyl nitrate or uranyl fluoride. These independent variables, the formula ranges, and approximations are discussed. The critical cylinder diameter, calculated by this formula, is within ±8% of the experimentally measured diameter for 112 experimental data points. Therefore, the formula can be used as a guideline for nuclear criticality safety.