ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
F. T. Osborne, S. Omi, V. T. Stannett, E. P. Stahel
Nuclear Technology | Volume 8 | Number 5 | May 1970 | Pages 445-449
Paper | Radioisotopes | doi.org/10.13182/NT70-A28689
Articles are hosted by Taylor and Francis Online.
A small-scale semicontinuous pilot plant for studying chemical reactions carried out in remote environments is described. The all-stainless system features modular construction enabling rapid exchange of various elements. The equipment design permits purification, sampling, and other manipulative tasks to be performed in a “safe” operating area. Dissolved gases and moisture are removed from the reactant mass prior to circulation in the primary reaction loop. In this particular application, moisture is removed by low-temperature adsorption on molecular sieves. Progress of the drying is monitored continuously by a commercially available instrument in which moisture passes through a semi-permeable foil to a capacitance element. The rate of reaction in the remote reaction zone is reflected continuously in the time rate of change of conversion as measured by in situ differential refractometry. Utilization of this system has permitted accurate measurement of the rate of 60Co radiation-induced polymerization under super-dry conditions.