ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Germany’s Unterweser completes removal of steam generators
All four steam generators at Germany’s Unterweser nuclear power plant have been removed from the reactor building, plant owner PreussenElektra has announced. The single-unit pressurized water reactor was shut down in 2011 as part of Germany’s decision to phase out nuclear energy. Decommissioning and dismantlement of the reactor began soon after PreussenElektra was granted a permit for the work in February 2018.
P. E. Reagan, E. L. Long, Jr., J. G. Morgan, J. H. Coobs
Nuclear Technology | Volume 8 | Number 5 | May 1970 | Pages 417-431
Paper | Fuel | doi.org/10.13182/NT70-A28686
Articles are hosted by Taylor and Francis Online.
The fission-gas release from pyrolytic-carbon-coated fuel particles was measured during irradiation, and the damage to the coating material and to the fuel was studied by postirradiation metallography. These particles were either uranium oxide, uranium carbide, or thorium-uranium carbide with a porous carbon primary coating. Particles coated with dense pyrolytic carbon and those coated with a combination of pyrolytic carbon and silicon carbide layers performed well during irradiation in the 1250 to 1400°C range, but both suffered severe internal reactions in the 1650 to 1700°C temperature range, even at low burnup. With one exception, all the experiments were conducted at a much higher burnup rate than would be encountered under normal power reactor conditions.