ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
P. F. Rago, N. Goldstein, E. Tochilin
Nuclear Technology | Volume 8 | Number 3 | March 1970 | Pages 302-309
Paper | Technique | doi.org/10.13182/NT70-A28678
Articles are hosted by Taylor and Francis Online.
A fissian foil-Lexan detector system has been developed to monitor reactor neutrons. It is similar to the system based on counting fission gamma rays but has some advantages; i.e., permanently recorded tracks that can be read any time after exposure; integrated recording; microgram amounts of fissionable material needed; and the elimination of specialized gamma-ray counting equipment. Fission-product damage tracks in the Lexan (or mica) are counted under an optical microscope. For thick foils, fluence is determined from the sensitivity factor of 1.16 × 10−5 tracks/(neutron-barn). Fluence measurements with the two systems are compared for several reactor environments while dose measurements are compared with tissue-equivalent calorimeter values. The use of 232Th to replace 238U as the fissionable isotope for the energy interval of 1.5 to 3 MeV, and of 235U to replace 239Pu for energies <600 ke V, was also investigated. Neptunium is retained as the fissionable material for the energy interval 600 keV to 1.5 MeV and the sulfur-activation detector for energies >3 MeV.