ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
H. O. Schad, A. A. Bishop
Nuclear Technology | Volume 8 | Number 3 | March 1970 | Pages 261-275
Paper | Fuel | doi.org/10.13182/NT70-A28673
Articles are hosted by Taylor and Francis Online.
Experiments were conducted to determine the behavior of stationary gas bubbles in narrow liquid-filled gaps. The work was carried out to help answer the question of how fission gas bubbles may behave in the sodium bond of oxide and carbide fueled rods. The hydraulic data obtained with uncracked pellets indicate that stagnant bubbles may exist even when the simulated fuel rod was vibrated. These stagnant bubbles are large enough to cause calculated hot spots in the bond. The location under an overhanging ledge formed by axial eccentric pellets was a common place for bubbles to stagnate. Possible differences between the actual fuel-rod behavior in the reactor and the test conditions may be caused by heating effects which influence bubble motion, cracked pellets which prevent accumulation of fission gas in the bonding, and the release of significant amounts of fission gas only when the reactor is shut down. Equations are presented for the maximum bubble size, and the length and width of bubbles stagnated at the lips (overhang) of fuel pellets.