ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Michael H. Bradbury, Bart Baeyens
Nuclear Technology | Volume 122 | Number 2 | May 1998 | Pages 250-253
Technical Note | Radioactive Waste Management and Disposal | doi.org/10.13182/NT98-A2866
Articles are hosted by Taylor and Francis Online.
The vast majority of sorption data used in performance assessment studies for radioactive waste repository concepts has been generated from small-scale laboratory batch sorption measurements on crushed rock samples. Since these data will mainly be used to describe the sorption on the in situ bulk rocks in safety studies, a justifiable and defensible procedure for making the transfer of sorption values from the laboratory data to data appropriate to the field conditions is required. At the present time, a generally accepted methodology for doing this is lacking, and little or no work is being carried out internationally on this important area. The question of whether the act of crushing is intrinsically likely to lead to higher sorption values than for intact rock because the area available for sorption has been increased is addressed here. The approach is based on comparing N2-BET surface area measurements on intact and crushed single minerals and rocks. Results are presented which indicate that the clay mineral content of the rock is critically important in this respect, whereas the influence of the rock porosity is only of minor consequence.