ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
B. W. McGhee, W. W. Graham, III, M. R. Haroon
Nuclear Technology | Volume 8 | Number 6 | June 1970 | Pages 531-535
Education | doi.org/10.13182/NT70-A28653
Articles are hosted by Taylor and Francis Online.
The increasing availability of high-strength 252Cf neutron sources for educational use suggests the possibility of a new wave of source-strength measurements in student laboratories. In this paper, different methods for calculation and measurement of strengths have been discussed. Results obtained by the maganese-boron method have been compared with the theoretical predictions. Sources of error have been pointed out and a procedure has been recommended for use in a laboratory. It is concluded that results obtained by this method are accurate to 5% while more elaborate and painstaking measurements may produce ∼2% accuracy.