ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
J. R. Trinko, Jr., S. H. Hanauer
Nuclear Technology | Volume 8 | Number 6 | June 1970 | Pages 522-530
Technique | doi.org/10.13182/NT70-A28652
Articles are hosted by Taylor and Francis Online.
A pulse-mode neutron detection system designed for reactor noise measurements was characterized and compared with conventional current-mode noise measurement systems. Pulses from a proportional counter with a 60-nsec electron collection time were amplified and applied to a discriminator and thence to a counting-rate circuit with a time constant of 15 µsec. Statistical fluctuations in the counting-rate voltage were frequency analyzed. Under conditions of negligible gamma flux and counting loss, the pulse system yielded frequency spectra indistinguishable from ion-chamber spectra. The results were not very sensitive to counting loss up to at least 20%, but the effect of counting loss limited the ultimate useful neutron flux for the system tested to <2 × 106 n/(cm2 sec). Space charge and gamma pileup in the detector controlled the performance of the pulse system in high gamma fluxes; the pulse system performed better than the best available current system over a limited range of neutron- and gamma-flux intensities. Because of its shorter time constant, the pulse-mode system can be used to measure power spectral density at much higher frequencies than the current-mode system. Thus, the pulse-mode system appears to be the more attractive for fast reactor subcriticality measurements.