ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
J. A. Conlin, D. R. Cuneo, E. L. Long, Jr., C. L. Segasser
Nuclear Technology | Volume 8 | Number 6 | June 1970 | Pages 507-515
Material | doi.org/10.13182/NT70-A28650
Articles are hosted by Taylor and Francis Online.
Bare (U, Th)O2 fuel pellets were irradiated in a graphite structure to evaluate the potential of this type fuel for high-temperature gas-cooled reactors. The maximum fuel temperature was 1650°C at fuel pellet centers and 1370°C at fuel pellet-tographite interfaces. The experiment was terminated when fission-gas release rates increased by an order of magnitude and the radial temperature gradient from the fuel pellet centers to outer edges increased from 335 to 390°C. Postirradiation evaluation showed no evidence of chemical reaction or incompatibility between the fuel and the surrounding graphite. The graphite underwent no significant changes, but most of the fuel pellets were severely fractured. Burnup (2.4% heavy metal) was below that where the fuel swelling would be expected and optical measurements of two intact pellets showed no dimensional changes.