ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
M. E. Whatley, L. E. McNeese, W. L. Carter, L. M. Ferris, E. L. Nicholson
Nuclear Technology | Volume 8 | Number 2 | February 1970 | Pages 170-178
Reactor | doi.org/10.13182/NT70-A28623
Articles are hosted by Taylor and Francis Online.
The molten-salt breeder reactor being developed at Oak Ridge National Laboratory (ORNL) requires continuous chemical processing of the fuel salt, 7LiF-BeF2-ThF4 (72-16-12 mole%) containing ∼0.3 mole% 233UF4. The reactor and the processing plant are planned as an integral system. The main functions of the processing plant will be to isolate 233Pa from the neutron flux and to remove the rare-earth fission products. The processing method being developed involves the selective chemical reduction of the various components into liquid bismuth solutions at ∼600°C, utilizing multistage counter-current extraction. Protactinium, which is easily separated from uranium, thorium, and the rare earths, would be trapped in the salt phase in a storage tank located between two extraction contactors and allowed to decay to 233U. Rare earths would be separated from thorium by a similar reductive extraction method; however, this operation will not be as simple as the protactinium isolation step because the rare-earth-thorium separation factors are only 1.3 to 3.5. The proposed process would employ electrolytic cells to simultaneously introduce reductant into the bismuth phase at the cathode and to return extracted materials to the salt phase at the anode. The practicability of the reductive extraction process depends on the successful development of salt-metal contactors, electrolytic cells, and suitable materials of construction.