ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
Paul N. Haubenreich, J. R. Engel
Nuclear Technology | Volume 8 | Number 2 | February 1970 | Pages 118-136
Reactor | doi.org/10.13182/NT8-2-118
Articles are hosted by Taylor and Francis Online.
The MSRE is an 8-MW(th) reactor in which molten fluoride salt at 1200°F circulates through a core of graphite bars. Its purpose was to demonstrate the practicality of the key features of molten-salt power reactors. Operation with 235U (33% enrichment) in the fuel salt began in June 1965, and by March 1968 nuclear operation amounted to 9000 equivalent full-power hours. The goal of demonstrating reliability had been attained—over the last 15 months of 235U operation the reactor had been critical 80% of the time. At the end of a 6-month run which climaxed this demonstration, the reactor was shut down and the 0.9 mole% uranium in the fuel was stripped very efficiently in an on-site fluorination facility. Uranium-233 was then added to the carrier salt, making the MSRE the world's first reactor to be fueled with this fissile material. Nuclear operation was resumed in October 1968, and over 2500 equivalent full-power hours have now been produced with 233U. The MSRE has shown that salt handling in an operating reactor is quite practical, the salt chemistry is well behaved, there is practically no corrosion, the nuclear characteristics are very close to predictions, and the system is dynamically stable. Containment of fission products has been excellent and maintenance of radioactive components has been accomplished without unreasonable delay and with very little radiation exposure. The successful operation of the MSRE is an achievement that should strengthen confidence in the practicality of the molten-salt reactor concept.