ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
Paul N. Haubenreich, J. R. Engel
Nuclear Technology | Volume 8 | Number 2 | February 1970 | Pages 118-136
Reactor | doi.org/10.13182/NT8-2-118
Articles are hosted by Taylor and Francis Online.
The MSRE is an 8-MW(th) reactor in which molten fluoride salt at 1200°F circulates through a core of graphite bars. Its purpose was to demonstrate the practicality of the key features of molten-salt power reactors. Operation with 235U (33% enrichment) in the fuel salt began in June 1965, and by March 1968 nuclear operation amounted to 9000 equivalent full-power hours. The goal of demonstrating reliability had been attained—over the last 15 months of 235U operation the reactor had been critical 80% of the time. At the end of a 6-month run which climaxed this demonstration, the reactor was shut down and the 0.9 mole% uranium in the fuel was stripped very efficiently in an on-site fluorination facility. Uranium-233 was then added to the carrier salt, making the MSRE the world's first reactor to be fueled with this fissile material. Nuclear operation was resumed in October 1968, and over 2500 equivalent full-power hours have now been produced with 233U. The MSRE has shown that salt handling in an operating reactor is quite practical, the salt chemistry is well behaved, there is practically no corrosion, the nuclear characteristics are very close to predictions, and the system is dynamically stable. Containment of fission products has been excellent and maintenance of radioactive components has been accomplished without unreasonable delay and with very little radiation exposure. The successful operation of the MSRE is an achievement that should strengthen confidence in the practicality of the molten-salt reactor concept.