ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
John Toman
Nuclear Technology | Volume 7 | Number 3 | September 1969 | Pages 243-252
Nuclear Explosive | doi.org/10.13182/NT69-A28605
Articles are hosted by Taylor and Francis Online.
Project Buggy, the first nuclear row-excavation experiment, was an important experiment in that it confirmed the basic concepts of channel excavation derived from HE experiments at very low yields, and proved the value of theoretical cratering calculations in predicting the effects of a nuclear detonation in an untested environment. Five nuclear explosives, each with a yield of 1.1 kt, were detonated simultaneously on March 12, 1968 in a dry, complex basalt formation on Chukar Mesa, Nevada Test Site. The explosives were buried at a depth of 41.1 m (135 ft) and spaced 45.7 m (150 ft) apart. The channel excavated has an average width of 77.4 m (254 ft), a depth of 19.8 m (65 ft), and a length of 261 m (855 ft), all measured with respect to the original ground surface. These apparent dimensions are significantly smaller than those which would be predicted on the basis of Danny Boy dimensions in the Buckboard Basalt (width, 10% less; depth, 19% less). It is believed that the small crater dimensions are due largely to the geologic conditions existing at the Buggy site. Differences in the cratering characteristics of the two basalt formations were determined by cratering calculations (TENSOR Code) prior to the detonation and the depth of burst was selected on the basis of these calculations. From the spacing of 150 ft between explosives, it was concluded that relatively large spacings can produce channels in hard rock free of noticeable scalloping or severe irregularities, even when adverse geologic conditions are present. The base surge, or cloud, which is characteristic of both nuclear and high-explosives cratering detonations, was quite circular and attained a diameter of 1157 m (3800 ft) at ∼40 sec. Integration of the fallout pattern out to infinity indicates an equivalent of 35 tons of fission products were deposited.