ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Gray S. Chang
Nuclear Technology | Volume 122 | Number 1 | April 1998 | Pages 43-51
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT98-A2849
Articles are hosted by Taylor and Francis Online.
The United States and Russia expect to have a surplus of ~150 tonnes of weapons-grade plutonium (WGP) and 1000 tonnes of weapons-grade uranium resulting from drastic reductions in nuclear weapons programs. One of the most favored candidate methods for disposing of the WGP is to blend it with natural or depleted uranium down to 5 to 7 wt% of WGP for light water reactor (LWR) fuel pellet fabrication. However, this approach, with a conversion ratio of 0.6, will produce more plutonium and other actinides in the spent fuel than the nonfertile fuel and the proposed actinide-reduced plutonium fuel (ARPF). This process only transforms the weapons-grade fissile materials to civilian-grade plutonium, which is still a nonproliferation concern, so it does not completely solve the plutonium disposition problem. Disposition of WGP in reactors without fertile material has been proposed by industry and national laboratories. A new ARPF is described that would use WGP mixed with medium-enrichment (20 at.% < 235U < 93 at.%) UO2 and the nonfertile material tungsten to achieve a conversion ratio <0.1. The ARPF can meet the WGP disposal goal while minimizing the plutonium production. Its physics and burnup characteristics are analyzed, and the results are compared with LWR UO2 and mixed-oxide fuel.