ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
I. A. Maslov, V. A. Lucknitsky, N. M. Karnaukhova, G. I. Karaganova
Nuclear Technology | Volume 7 | Number 4 | October 1969 | Pages 389-392
Analysis | doi.org/10.13182/NT69-A28483
Articles are hosted by Taylor and Francis Online.
To measure the evaporation rate of solids in vacuum, the evaporating substance was condensed on a water-cooled lead plate. The plate with the condensate was removed, irradiated by neutrons, and etched in a mixture of nitric and hydrofluoric acids, and the radioactive isotopes in the solution were identified. The possibilities of the method are illustrated by the measurement of the molybdenum metal and zirconium carbide evaporation rates. The amount of molybdenum (99Mo) was determined by direct γ-spectrometry of the solution. In the case of zirconium, radiochemical isolation of 95Zr from the mixture of antimony, zinc, tantalum, and hafnium present in the solution in amounts commensurable with that of zirconium was suggested. The vaporization experiment was carried out in a vacuum ∼10-5 to 10-6 Torr. The measured values of the molybdenum and zirconium carbide evaporation rates in the temperature range ∼1900 to 2400°C are given.