ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Dry Ice Blasting: A Game-Changer for Safe Cleaning and Decontamination in Nuclear Power Plants
The nuclear energy industry is critical not only for meeting the world’s growing demand for electricity but also for advancing global decarbonization goals. As the sector evolves—through life extensions of existing plants, decommissioning, innovations like small modular reactors (SMRs) and microreactors, and new facility construction—the need for safe, efficient, and environmentally responsible maintenance and decommissioning continues to grow. Whether a plant is coming online, operating beyond its original design life, or entering decommissioning, cleanliness and operational integrity remain non-negotiable. That’s where dry ice blasting stands out—a powerful, safe cleaning method ideally suited for the high-stakes demands of nuclear environments.
T. Roger Billeter, R. R. Schemmel
Nuclear Technology | Volume 7 | Number 4 | October 1969 | Pages 374-382
Instrument | doi.org/10.13182/NT69-A28480
Articles are hosted by Taylor and Francis Online.
Microwave techniques, as used for the detection and measurement of moisture in reactor coolant gases, operate because of the resonant frequency change of a microwave cavity (sensor) through which the sample gas flows, due to the corresponding change in its dielectric constant. For the experimental system, a moisture detection sensitivity of 15 ppmv/µV for sample gas at STP results for 10 mW of microwave oscillator power. The minimum moisture detection level of about 2 ppmv depends upon total system noise. Gas transport time limits the speed of response, as does the time constant of the synchronous demodulator of the sample phase-lock amplifier. For thermal equilibrium conditions, the maximum instrument drift for a one-hour interval equates to an equivalent moisture concentration range of 10 ppmv.