ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
T. Roger Billeter, R. R. Schemmel
Nuclear Technology | Volume 7 | Number 4 | October 1969 | Pages 374-382
Instrument | doi.org/10.13182/NT69-A28480
Articles are hosted by Taylor and Francis Online.
Microwave techniques, as used for the detection and measurement of moisture in reactor coolant gases, operate because of the resonant frequency change of a microwave cavity (sensor) through which the sample gas flows, due to the corresponding change in its dielectric constant. For the experimental system, a moisture detection sensitivity of 15 ppmv/µV for sample gas at STP results for 10 mW of microwave oscillator power. The minimum moisture detection level of about 2 ppmv depends upon total system noise. Gas transport time limits the speed of response, as does the time constant of the synchronous demodulator of the sample phase-lock amplifier. For thermal equilibrium conditions, the maximum instrument drift for a one-hour interval equates to an equivalent moisture concentration range of 10 ppmv.