ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
Clyde E. Milstead, Wayne E. Bell, J. H. Norman
Nuclear Technology | Volume 7 | Number 4 | October 1969 | Pages 361-366
Material | doi.org/10.13182/NT69-A28478
Articles are hosted by Taylor and Francis Online.
The deposition of iodine on low chromium-alloy steel (1% Cr—1/4% Mo alloy) has been investigated in vacuo at 316, 400, and 482°C using a pseudoisopiestic (static) method. An adsorption isotherm was obtained at 400°C over an iodine (monotomic) pressure range of 2.9 × 10-9 to 5.1 × 10-7 atm. The levels of iodine deposition at 400°C ranged from 3.8 to 23.2 µg I/cm2; these values are in agreement with data obtained using transpiration techniques. The low-level sorption data are interpreted on the basis of the dissociation of I2 to yield monatomic iodine as well as the interaction with the steel surface to form volatile iron iodides, which were deposited in cooler regions of the apparatus. The high-level sorption behavior of iodine on steel is in accord with the expected behavior based on the thermodynamic properties of FeI2(s).