ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
Clyde E. Milstead, Wayne E. Bell, J. H. Norman
Nuclear Technology | Volume 7 | Number 4 | October 1969 | Pages 361-366
Material | doi.org/10.13182/NT69-A28478
Articles are hosted by Taylor and Francis Online.
The deposition of iodine on low chromium-alloy steel (1% Cr—1/4% Mo alloy) has been investigated in vacuo at 316, 400, and 482°C using a pseudoisopiestic (static) method. An adsorption isotherm was obtained at 400°C over an iodine (monotomic) pressure range of 2.9 × 10-9 to 5.1 × 10-7 atm. The levels of iodine deposition at 400°C ranged from 3.8 to 23.2 µg I/cm2; these values are in agreement with data obtained using transpiration techniques. The low-level sorption data are interpreted on the basis of the dissociation of I2 to yield monatomic iodine as well as the interaction with the steel surface to form volatile iron iodides, which were deposited in cooler regions of the apparatus. The high-level sorption behavior of iodine on steel is in accord with the expected behavior based on the thermodynamic properties of FeI2(s).