ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
L. J. Anastasia, P. G. Alfredson, M. J. Steindler
Nuclear Technology | Volume 7 | Number 5 | November 1969 | Pages 425-432
Chemical Process | doi.org/10.13182/NT69-A28445
Articles are hosted by Taylor and Francis Online.
Fluorination of simulated thermal reactor fuel containing UO2, PuO2, and oxides of elements formed in fission has been studied in a 2-in.-diam reactor containing a fluidized bed of alumina. After oxidation at 450°C pulverized the fuel pellets, the uranium was selectively fluorinated to UF6 with 10 vol% BrF5 at 200 to 400°C. Plutonium which remained in the fluidized bed as PuF4 was subsequently converted to PuF6 with 90 val% fluorine at 300 to 550°C. Volatile NpF6 was formed during fluorination with both BrF5 and fluorine and was distributed equally between the UF6 and the PuF6 products. The uranium was fluorinated at high rates with reasonably high utilization of BrF5. The temperature used to fluorinate uranium with BrF5 and plutonium with fluorine affected the extent of removal of plutonium from the fluidized bed. When fluorination is carried out at 250 to 350°C for uranium and 300 to 550°C for plutonium, ∼3% of the plutonium charged remains in the fluidized bed. Plutonium losses can be reduced by reuse of the alumina bed to process several batches of fuel.