ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
Robert N. Endebrock, Walter H. D'Ardenne, Warren F. Witzig
Nuclear Technology | Volume 7 | Number 5 | November 1969 | Pages 415-424
Reactors Siting | doi.org/10.13182/NT69-A28444
Articles are hosted by Taylor and Francis Online.
An underwater siting guide for use in international and territorial waters must be created to evaluate the consequences of the release of fission products from a nuclear reactor sited in the ocean. This paper is an initial attempt to develop the basic equations for such a guide. A very conservative fission-product-release inventory to illustrate undersea application is developed consisting of 100% of the soluble and 1% of the insoluble fission products or ∼66% of the gross fission-product inventory. The ocean is divided into four distinct zones for which current velocity profiles and characteristic diffusion parameters are established. Based upon a three-dimensional diffusion model incorporating shear effect and with the assumptions of no current variance, zero mean vertical current velocity, and depletion of the inventory by radiological decay only, equations are presented which describe the physical transport and dispersion of the radioisotopes. A computer program, SEADIF, is applicable to a person immersed in the water and is used to determine, for both contained and uncontained systems, the distance factors and the radioisotope concentrations as a function of time and position. Representative results for a 10 MW(th) system are given.