ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
C. D. Baumann, P. E. Reagan
Nuclear Technology | Volume 7 | Number 6 | December 1969 | Pages 537-549
Fuel | doi.org/10.13182/NT69-A28373
Articles are hosted by Taylor and Francis Online.
Mathematical models describing idealized mechanisms of fission-gas release were used as criteria to determine the mode of release from fully enriched UCrfueled pyrocarbon-coated particles that had slightly 235U-contaminated outer coatings. Below 1600°C the release of krypton, and probably iodine and xenon, was due to fissions which occurred in the contaminated outer coating, with the products escaping by solid-state diffusion from the coating. Above 1600°C the krypton release increased more rapidly with temperature. The krypton originated in the fuel core and traversed the outer coating either by solid-state diffusion or Knudsen flow through micropores in the outer coating. The overall increase in release rate with time was probably due to migration of the 235U initially in the outer coating, and to the over five-fold increase in 235U contamination of the outer coating during irradiation.