ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
William T. Lee
Nuclear Technology | Volume 7 | Number 2 | August 1969 | Pages 155-163
Radioisotopes | doi.org/10.13182/NT69-A28359
Articles are hosted by Taylor and Francis Online.
During the study of the stress-rupture properties of austenitic stainless steels in high-purity static liquid sodium, zirconium foil was placed in the sodium to getter oxygen and maintain a high-purity sodium environment throughout the test. Results of the biaxial stress-rupture tests on thin-walled Type-304 and Type-316 stainless-steel tubing in the range 1200°F (649°C) to 1400°F (760°C) showed that the rupture strength of the tubing was significantly lower in the zirconium-gettered static sodium than in non-gettered static sodium or helium. This reduction in rupture strength was greater with higher test temperature and longer exposure time. In the presence of sodium, the zirconium foil decarburized the stainless steel; the decarburization process also resulted in an extensive sigma-phase formation on the region of the tubing exposed to sodium. The decarburization increased with test temperature and time of exposure. It was concluded that the decreased stress-rupture strength of specimens tested in zirconium-gettered sodium was caused by decarburization of the stainless steel.