ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
Kurt Goldmann, John M. Mckee
Nuclear Technology | Volume 6 | Number 4 | April 1969 | Pages 321-331
Technical Papers and Note | doi.org/10.13182/NT69-A28340
Articles are hosted by Taylor and Francis Online.
Liquid potassium was circulated between 1200 and 1600°F in 31 Type-316 stainless-steel thermal convection loops and one forced circulation loop. Each loop contained a string of niobium-1% zirconium (Nb-1% Zr) alloy and stainless-steel test specimens positioned along the entire heated leg. To follow corrosion as a function of time and temperature, the test specimens were examined at 500 to 2500 h intervals. Controlled additions of interstitial impurities to the potassium were made in some thermal convection loops at the start of the test. Oxygen additions to the potassium sharply accelerated the initial rate of Nb-1% Zr surface removal but produced no identifiable oxide film or microstructural changes. The initially high weight-loss rates, observed in oxygen addition loops, decayed rapidly with time, returning essentially to normal rates (in the absence of further oxygen additions) after 2500 h. Oxygen additions produced very little effect on the stainless-steel corrosion rates, presumably due to rapid gettering of the added oxygen by the Nb-1% Zr. Similar tests in a forced circulation loop, with potassium velocities past the test specimens 18 times higher than in the thermal convection loops, showed that any effects of velocity on the Nb-1% Zr corrosion rate were far overshadowed by effects that are assumed to be related to oxygen in the potassium.