ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fusion Energy Week begins today
Excitement around fusion has only grown this year since the French magnetic confinement fusion tokamak known as WEST maintained a plasma for 1,337 seconds in February, toppling the 1,006-second record set by China’s EAST a few weeks prior. Investment, legislation, and new research are riding this new surge of attention, but fusion development has a long history.
J. I. Federer, W. C. Robinson, Jr., F. H. Patterson
Nuclear Technology | Volume 6 | Number 4 | April 1969 | Pages 298-306
Technical Papers and Note | doi.org/10.13182/NT69-A28337
Articles are hosted by Taylor and Francis Online.
The feasibility of preparing UO2 powder in a flame reactor was demonstrated by reacting UF6 with hydrogen and oxygen. In the flame reactor, the reactants combine in a flame at the end of an injector contained within a reaction chamber. The reaction was conducted with stoichiometric quantities of reactants and with mixtures containing excess hydrogen or oxygen. The reaction was found to be self-sustaining after ignition with an HF flame, which was used in initial experiments to supply heat for the reaction. X-ray diffraction of the powder product indicated that UO2 and U3O8 were the principal reaction products, occurring sometimes with other compounds. The crystallite size of as-prepared powder ranged from about 0.012 to 0.038 µm; however, sieve analyses showed that the powder was highly agglomerated. The as-prepared powder contained ∼ 4 to 14 wt% F, but heat treatment at 1000°C in hydrogen reduced the fluorine content to ≤ 30 ppm. The defluorination heat treatment increased the crystallite size to about an order of magnitude. Pellets pressed from defluorinated powder sintered to 95% of theoretical density at 1400°C.