ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
Richard N. Gurley, John A. Wethington, Jr.
Nuclear Technology | Volume 6 | Number 5 | May 1969 | Pages 483-493
Technical Papers and Note | doi.org/10.13182/NT69-A28325
Articles are hosted by Taylor and Francis Online.
The radiolysis of CF4, alone and mixed with UF6, UF6 + N2, UF6 + Ar, UF6 + Xe, UF6 + SF6, and UF4 + C by gamma photons from 60Co or by fission fragments from 235U gave C2F4 as the principal product. Traces of C2F6O and C3F3O were also found. In the gamma irradiation of CF4 + UF4 + C, charcoal acted as a fluorine scavenger and increased the consumption of CF4, but N2, Ar, Xe, and SF6 showed no measurable scavenging effects. During the fission fragment irradiations, C, N2, and Xe acted as scavengers, but such action by Ar or SF6 was not detected. The results for 60Co gamma irradiations and for fission fragment irradiations could be explained by a dynamic interconversion between CF4 and the products C2F4 and F2. A mathematical model that related the extent of interconversion with energy deposition was formulated.