ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Michael Langer, Manfred Wallner
Nuclear Technology | Volume 121 | Number 2 | February 1998 | Pages 199-211
Technical Paper | German Direct Disposal Project | doi.org/10.13182/NT98-A2832
Articles are hosted by Taylor and Francis Online.
Site-specific data of the Gorleben salt dome (e.g., the geological structure of the salt dome and the geomechanical properties of the evaporite) are presented in the form of a working model to optimize the various repository concepts discussed within the German research project "Direct Disposal of Spent Fuel" and to compare their long-term effects.A comparative evaluation of the different emplacement concepts was made on the basis of the following calculated results, which are considered decisive: temperatures in the repository, temperatures in the salt dome/overburden transition zone, tensile stresses at the top of the salt dome zone, and uplift at the ground surface.The thermal and thermomechanical consequences of four preselected emplacement concepts do not differ very much. The rock mechanical analyses of the far field do not indicate any particular concept as being clearly preferable.The following results of the parameter variations (creep capacity and width of the repository field) are significant. A reduction in the repository field width gives lower maximum temperatures for the same specific heat load. An evaporite formation with a high creep capacity leads to significantly lower stress reduction at the top of the salt dome; tensile stresses do not occur. The stress reductions at the top of the salt dome are also less, but the horizontal stress orthogonal to the repository still lies in the tensile zone, if a low creep capacity of the rock salt is assumed.