ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
R. B. Pratt, J. D. Sease, W. H. Pechin, A. L. Lotts
Nuclear Technology | Volume 6 | Number 3 | March 1969 | Pages 241-255
Technical Paper and Note | doi.org/10.13182/NT69-A28313
Articles are hosted by Taylor and Francis Online.
This report describes work concerning production of coated-particle fuels for use in high-temperature, gas-cooled reactors (HTGR's) and a coating system that has served as the basis for the design of a remotely operated recycle fuel fabrication system. We have demonstrated an ability to deposit low-and high-density pyrolytic carbon coatings having a variety of properties on a scale adequate to satisfy the proposed Thorium Uranium Recycle Facility production rate, 10 kg of heavy metal fuel per day. To do this, we have designated an engineering scale, 5-in.-i.d. fluidized bed coating furnace and its auxiliaries. Additionally, we have identified process controlling parameters and demonstrated their effect on inner- and outer-coating properties produced from acetylene, propane, and propylene. Specific coating properties controlled were density, thickness, anisotropy factor, coating rate, and deposition efficiency. Parameters identified include: bed temperature, gas purity, gas flux, inert-gas dilution, charge size, kernel composition, kernel size, and components configuration.