ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS’s Mentor Match applications open
Applications are now open for the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the inaugural summer cohort, which will take place July 1–August 31, is June 20. The application form can be found here.
R. B. Pratt, J. D. Sease, W. H. Pechin, A. L. Lotts
Nuclear Technology | Volume 6 | Number 3 | March 1969 | Pages 241-255
Technical Paper and Note | doi.org/10.13182/NT69-A28313
Articles are hosted by Taylor and Francis Online.
This report describes work concerning production of coated-particle fuels for use in high-temperature, gas-cooled reactors (HTGR's) and a coating system that has served as the basis for the design of a remotely operated recycle fuel fabrication system. We have demonstrated an ability to deposit low-and high-density pyrolytic carbon coatings having a variety of properties on a scale adequate to satisfy the proposed Thorium Uranium Recycle Facility production rate, 10 kg of heavy metal fuel per day. To do this, we have designated an engineering scale, 5-in.-i.d. fluidized bed coating furnace and its auxiliaries. Additionally, we have identified process controlling parameters and demonstrated their effect on inner- and outer-coating properties produced from acetylene, propane, and propylene. Specific coating properties controlled were density, thickness, anisotropy factor, coating rate, and deposition efficiency. Parameters identified include: bed temperature, gas purity, gas flux, inert-gas dilution, charge size, kernel composition, kernel size, and components configuration.