ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Tilmann Rothfuchs, Johannes Droste, Hans-Karl Feddersen, Stefan Heusermann, Jörn U. Schneefuss, Alexandra Pudewills
Nuclear Technology | Volume 121 | Number 2 | February 1998 | Pages 189-198
Technical Paper | German Direct Disposal Project | doi.org/10.13182/NT98-A2831
Articles are hosted by Taylor and Francis Online.
The thermal simulation of drift storage (TSS) full-scale test is being performed in the Asse salt mine in Germany to study the thermomechanical effects of the direct disposal of spent-fuel elements in a nuclear salt repository. The test field comprises two parallel test drifts, in each of which three dummy casks are deposited. The remaining volume of the drifts is backfilled with crushed salt. The casks are equipped with electrical heaters with a thermal power output of 6.4 kW each. The test has been in operation since September 1990. A design temperature of ~210°C at the surface of the heater casks was reached after 5 months. Because the thermal conductivity of the backfill increases with its compaction, the temperature at the surface of the casks subsequently decreased, reaching ~170°C after 5 yr of heating. The drift closure, which causes increasing compaction of the backfill, was considerably accelerated by heating. However, the initial backfill porosity of 35% decreased more slowly than predicted, to ~27% in the heated area at the end of 1995. The average backfill pressure has currently reached 18% of the initial vertical stress in the test field area, which has been estimated at ~12 MPa. Studies of water and gas releases from the backfill material reveal significant increases of carbon dioxide, methane, and hydrogen concentrations due to heating. In situ measurements will be continued in the coming years to study further thermomechanical reactions of the backfill and the surrounding rock salt to the heat input.