ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Bernd Grambow, Andreas Loida, Emmanuel Smailos
Nuclear Technology | Volume 121 | Number 2 | February 1998 | Pages 174-188
Technical Paper | German Direct Disposal Project | doi.org/10.13182/NT98-A2830
Articles are hosted by Taylor and Francis Online.
The results are summarized of 15 yr of German research on spent fuel with respect to its suitability as a waste form disposed of in a repository located in the Gorleben salt dome. Within the multibarrier system for long-term isolation of high-level waste (HLW), the innermost engineered barrier "canistered spent fuel" contributes essentially to isolating radionuclides from the biosphere if a salt brine were to come into contact with the waste form. A large fraction of the radionuclide contents of the reacted fuel mass would become reimmobilized within secondary alteration products and on container corrosion products, but inevitably a certain nuclide-specific fraction would be released into the aqueous geochemical environment. The corrosion resistance of the fuel and the radionuclide mobility are not inherent materials properties but also depend on geological disposal conditions, packing concepts, and radioactive decay. In particular, the availability of oxidants is critical, controlling spent-fuel alteration rates and alteration products as well as radionuclide solubilities. Spent fuel is at least as suitable for final disposal as is HLW glass.