ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
S. S. Christopher, J. J. Koziol, D. E. Mahagin
Nuclear Technology | Volume 6 | Number 1 | January 1969 | Pages 47-55
Technical Papers and Note | doi.org/10.13182/NT69-A28266
Articles are hosted by Taylor and Francis Online.
Two fuel elements containing 0.05 wt% B4 C in 6% enriched UO2, were irradiated in the Saxton reactor to burnups of ∼1000 and 5000 MWd per metric ton of uranium at peak heat ratings of 17.2 and 19.8 kW/ft, respectively. These elements were fabricated by vibratory compaction to densities of 88 ± 2% of theoretical with local boron concentrations maintained within a variation of ∼ ± 20% of the nominal loading. The postirradiation examination revealed no significant dimensional changes in either element and no axial boron redistribution of any consequence. However, the boron migrated radially outward in both irradiated fuel elements. The boron redistribution does not appear to be a function of burnup but depends heavily on the thermal gradient during irradiation. Its effect on core physics was analyzed using the THERMOS program, and the changes in ηf(ratio of neutrons produced to thermal neutrons absorbed) and Δρ (difference in core reactivity) were found to be minimal.