ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
U.S. nuclear supply chain: Ready for liftoff
Craig Piercycpiercy@ans.org
This month, September 8–11, the American Nuclear Society is teaming up with the Nuclear Energy Institute to host our first-ever Nuclear Energy Conference and Expo—NECX for short—in Atlanta. This new meeting combines ANS’s Utility Working Conference and NEI’s Nuclear Energy Assembly to form what NEI CEO Maria Korsnick and I hope will be the premier nuclear industry gathering in America.
We did this because after more than four decades of relative stagnation, the U.S. nuclear supply chain is finally entering a new era of dynamic growth. This resurgence is being driven by several powerful and increasingly durable forces: the explosive demand for electricity from artificial intelligence and data centers, an unprecedented wave of public and private acceptance of—and investment in—advanced nuclear technologies, and a strong market signal for reliable, on-demand power. Add the recent Trump administration executive orders on nuclear into the mix, and you have all the makings of an accelerant-rich business environment primed for rapid expansion.
Peter S. Jackson, Patrick J. Williams
Nuclear Technology | Volume 121 | Number 1 | January 1998 | Pages 70-80
Technical Paper | Human Factors | doi.org/10.13182/NT98-A2820
Articles are hosted by Taylor and Francis Online.
Most commercial pressurized water reactors with alloy 600 steam generator tubes are susceptible to stress-induced corrosion at locations such as the tube sheet transition, the tube-to-tube support structure interface, U-bend regions with high localized stresses, and to a lesser extent, free-span locations between supports where deposits or manufacturing defects have caused accelerated local attack. Under postulated main steam-line break (MSLB) accident conditions (and in rare instances during normal operation), some leakage of reactor coolant inventory through these cracks occurs. The result is an iodine source term to the environment.A simplified probabilistic iodine release model has been developed that is different from previous conservative deterministic models, which were developed for the routine steam generator tube rupture analysis, which is performed as part of a plant's safety analysis. The model described herein was developed to calculate the probability that the iodine release for MSLB-induced steam generator leakage will result in thyroid and whole body doses that do not exceed the criteria in 10CFR100 for the projected condition of the plant's steam generator tubes after a specified period of full-power operation.This simplified probabilistic model treats the intrinsic statistical nature of the projected population of degraded tubes, the probability of leakage for multiple degradation mechanisms, and the probability distributions for iodine release for a preexisting spike and a coincident spike.Results from applying this methodology to data from a plant with substantial steam generator degradation indicate that steam generators with multiple degradation mechanisms can be operated safely for normal operating cycles. Safely, in this case, means without a significant probability of exceeding thyroid and whole body dose criteria under normal operation and postulated accident conditions.