ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Peter S. Jackson, Patrick J. Williams
Nuclear Technology | Volume 121 | Number 1 | January 1998 | Pages 70-80
Technical Paper | Human Factors | doi.org/10.13182/NT98-A2820
Articles are hosted by Taylor and Francis Online.
Most commercial pressurized water reactors with alloy 600 steam generator tubes are susceptible to stress-induced corrosion at locations such as the tube sheet transition, the tube-to-tube support structure interface, U-bend regions with high localized stresses, and to a lesser extent, free-span locations between supports where deposits or manufacturing defects have caused accelerated local attack. Under postulated main steam-line break (MSLB) accident conditions (and in rare instances during normal operation), some leakage of reactor coolant inventory through these cracks occurs. The result is an iodine source term to the environment.A simplified probabilistic iodine release model has been developed that is different from previous conservative deterministic models, which were developed for the routine steam generator tube rupture analysis, which is performed as part of a plant's safety analysis. The model described herein was developed to calculate the probability that the iodine release for MSLB-induced steam generator leakage will result in thyroid and whole body doses that do not exceed the criteria in 10CFR100 for the projected condition of the plant's steam generator tubes after a specified period of full-power operation.This simplified probabilistic model treats the intrinsic statistical nature of the projected population of degraded tubes, the probability of leakage for multiple degradation mechanisms, and the probability distributions for iodine release for a preexisting spike and a coincident spike.Results from applying this methodology to data from a plant with substantial steam generator degradation indicate that steam generators with multiple degradation mechanisms can be operated safely for normal operating cycles. Safely, in this case, means without a significant probability of exceeding thyroid and whole body dose criteria under normal operation and postulated accident conditions.