ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
U.S. nuclear supply chain: Ready for liftoff
Craig Piercycpiercy@ans.org
This month, September 8–11, the American Nuclear Society is teaming up with the Nuclear Energy Institute to host our first-ever Nuclear Energy Conference and Expo—NECX for short—in Atlanta. This new meeting combines ANS’s Utility Working Conference and NEI’s Nuclear Energy Assembly to form what NEI CEO Maria Korsnick and I hope will be the premier nuclear industry gathering in America.
We did this because after more than four decades of relative stagnation, the U.S. nuclear supply chain is finally entering a new era of dynamic growth. This resurgence is being driven by several powerful and increasingly durable forces: the explosive demand for electricity from artificial intelligence and data centers, an unprecedented wave of public and private acceptance of—and investment in—advanced nuclear technologies, and a strong market signal for reliable, on-demand power. Add the recent Trump administration executive orders on nuclear into the mix, and you have all the makings of an accelerant-rich business environment primed for rapid expansion.
Joonhong Ahn
Nuclear Technology | Volume 121 | Number 1 | January 1998 | Pages 24-39
Technical Paper | Kiyose Birthday Anniversary | doi.org/10.13182/NT121-24
Articles are hosted by Taylor and Francis Online.
Presented are results of a mathematical analysis on radionuclide transport in parallel planar fractures in water-saturated geologic formations integrated with the source term model, where precipitation of hardly soluble species at the waste-form alteration location and subsequent radionuclide transport in the engineered barriers are considered. Radioactive decay chains of an arbitrary length are considered. A computer code has been developed based on the analytical solutions.The major hazard contributors are 241Am and 243Am in the waste form; 239Pu, 229Th, and 243Am at the surface of the engineered barriers; 223Ra, 231Pa, and 227Ac at a 10-m location from the engineered barriers; and 99Tc, 223Ra, and 225Ra at a 100-m location. With a transport distance of 100 m through the natural barrier, a four-orders-of-magnitude reduction in the total hazard is observed.Thus, the importance of the region in the vicinity of the engineered barriers in the context of the safety assessment can be pointed out. Because the region is disturbed by repository construction, further analysis must be performed by taking into account differing geochemical, hydrological, and mechanical properties from those in the undisturbed host rock.Because the major contributors in the host rock are the decay daughters of minor actinides, recovery of minor actinides reduces the total hazard evaluated at the exit of the geosphere. However, the radiological hazard would be reduced much more effectively by the 100-m-thick geologic formation around the repository than by even a 99% recovery of the actinides.