ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
M. H. Lloyd, R. G. Haire
Nuclear Technology | Volume 5 | Number 3 | September 1968 | Pages 114-122
Technical Paper and Note | doi.org/10.13182/NT68-A28040
Articles are hosted by Taylor and Francis Online.
A sol-gel process for preparing dense microspheres of PuO2 was developed. The process has three major operations: 1) preparation of an aqueous sol; 2) removal of water to give solid gel particles; and 3) calcination at controlled conditions to remove volatiles and to sinter to a high density at relatively low temperatures (1100 to 1200°C). The plutonia sol is prepared by precipitating the hydrous oxide from a nitrate solution with ammonium hydroxide. After it is washed, the hydrous oxide is peptized by the addition of nitric acid to give a nitrate-rich plutonia sol containing a nitrate/plutonium ratio of 1. The nitrate concentration is lowered by drying and baking the sol. The residue is then resuspended in water to give a dilute sol, which is concentrated by evaporation to the desired plutonium concentration. The sols produced by this procedure are 1 to 3 M in plutonium concentration and have / Pu mole ratios of 0.1 to 0.15. They are stable for several months and compatible with low-nitrate thorium and uranium sols. Dense homogeneous microspheres of plutonia, plutonia-urania, and plutonia-thoria have been produced at desired ratios on a pilot plant scale.