ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
Bernice E. Paige, Kenneth L. Rohde
Nuclear Technology | Volume 5 | Number 4 | October 1968 | Pages 218-223
Technical Paper and Note | doi.org/10.13182/NT68-A28022
Articles are hosted by Taylor and Francis Online.
More economical methods of manufacturing aluminum-uranium fuel elements used extensively in high thermal-neutron flux reactors might be employed if the quantity of silicon allowed in the fuels could be substantially increased. Since silicon has created problems in reprocessing this type of fuel, various core and cladding alloys were examined for the effect of the silicon content upon dissolution, extraction, and solids production during dissolution. Dissolution rates in nitric acid were related to the metallurgical compositions of the alloys which, in turn, were related to their silicon content, but the effect was not sufficient to interfere with the reprocessing of the fuels. Emulsion stabilization, a problem during liquid-liquid extraction of uranium, is caused by the silicon that dissolves from the alloy as the intermetallic phase U(Al,Si)3. Silicon present in the alloy at a silicon:uranium atom ratio <1 is in the intermetallic fuel particle, while silicon in excess of approximately one atom per atom of uranium does not enter into the intermetallic phase and is present in the alloys as segregations of elemental silicon. This elemental silicon does not dissolve and remains in the dissolver solution as undesirable solids.