ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
J. Kuypers, J. P. Ruiter
Nuclear Technology | Volume 5 | Number 5 | November 1968 | Pages 354-361
Technical Papers and Note | doi.org/10.13182/NT68-A28003
Articles are hosted by Taylor and Francis Online.
The leaktightness of a number of vessels was determined at subatmospheric pressure. For structural reasons, the maximum allowable pressure difference between the contained volume and the atmosphere was limited to 0.2 kg/cm2. Inleakage was determined by measuring the oxygen contained in the inleaking air. The oxygen initially present in the vessels was removed in advance by catalytic combination with hydrogen. With this method, the change in the oxygen partial pressure is more perceptible than a change in the absolute pressure. Additionally, a homogeneous temperature distribution inside the vessel is not required. The oxygen partial pressure was measured by an electrochemical cell. A leakage rate of 1.1 ± 0.2 liters/h into a contained volume of 152 m3 (i.e., <0.02%/day) was determined within 41 h after the oxygen was removed. Although the method is accurate and fast and can be used for a reactor containment, even with the reactor in operation, it is applicable only to leakage rate measurements at subatmospheric pressures. It must be pointed out that a leak at subatmospheric pressure may behave quite differently when the internal pressure is greater than the external.