ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
J. Kuypers, J. P. Ruiter
Nuclear Technology | Volume 5 | Number 5 | November 1968 | Pages 354-361
Technical Papers and Note | doi.org/10.13182/NT68-A28003
Articles are hosted by Taylor and Francis Online.
The leaktightness of a number of vessels was determined at subatmospheric pressure. For structural reasons, the maximum allowable pressure difference between the contained volume and the atmosphere was limited to 0.2 kg/cm2. Inleakage was determined by measuring the oxygen contained in the inleaking air. The oxygen initially present in the vessels was removed in advance by catalytic combination with hydrogen. With this method, the change in the oxygen partial pressure is more perceptible than a change in the absolute pressure. Additionally, a homogeneous temperature distribution inside the vessel is not required. The oxygen partial pressure was measured by an electrochemical cell. A leakage rate of 1.1 ± 0.2 liters/h into a contained volume of 152 m3 (i.e., <0.02%/day) was determined within 41 h after the oxygen was removed. Although the method is accurate and fast and can be used for a reactor containment, even with the reactor in operation, it is applicable only to leakage rate measurements at subatmospheric pressures. It must be pointed out that a leak at subatmospheric pressure may behave quite differently when the internal pressure is greater than the external.