ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
John L. Anderson, Edward Lantz
Nuclear Technology | Volume 5 | Number 6 | December 1968 | Pages 424-436
Technical Paper and Note | doi.org/10.13182/NT68-A27968
Articles are hosted by Taylor and Francis Online.
A nuclear reactor space power system using out-of-pile thermionic diodes, heat pipes, and a dual central absorber rod type of reactivity control has been studied. Emphasis is placed on the neutronic aspects and general feasibility of the concept. Comparison is made between uranium-233 and -235 nitride and plutonium-239 nitride fuels. From a neutronic standpoint, plutonium-239 nitride is found to be a slightly better fuel than uranium-233 nitride for this fast-spectrum reactor. In this concept, heat is transferred from the reactor core to the thermionic diodes by layers of radial heat pipes stacked alternately with slabs of fuel. For this out-of-pile concept, which would supply ∼130 kW(e), the reactor can be considerably smaller than the equivalent reactor with in-pile diodes. It would be particularly adaptable to a shadow-shielded type of application.