ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Uldis Potapovs, J. Russell Hawthorne, Charles Z. Serpan, Jr.
Nuclear Technology | Volume 5 | Number 6 | December 1968 | Pages 389-409
Technical Paper and Note | doi.org/10.13182/NT68-A27965
Articles are hosted by Taylor and Francis Online.
Embrittlement of the Army SM-1A reactor pressure vessel, as modified by the recently completed in-place anneal, was assessed, and an analysis made of its reembrittlement behavior with subsequent radiation service. Experimental results from a surveillance program covering one complete irradiation and annealing cycle are presented, together with a summary of experimental information on the annealing response of the vessel steel (A350-LF1, Modified) from accelerated irradiation programs. These data indicate a 0°F maximum pressure vessel wall Charpy- V 30-ft-lb transition temperature after the in-place anneal vs a −80°F preservice transition temperature (based on the notch ductility properties of a duplicate ring forging). The maximum Charpy- V 30-ft-lb transition temperature of the pressure vessel before the annealing operation was estimated at 190° F. A projection of postanneal pressure vessel lifetime in terms of neutron fluence >0.5 MeV was derived from spectra calculations and the experimentally predicted reirradiation response of the pressure vessel steel. The maximum permissible vessel wall fluence is estimated at 5.5 × 1019 n/cm2 (>0.5 MeV). This is comparable to-124.7 MW-y of reactor operation.