ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
S. M. Zivi
Nuclear Technology | Volume 5 | Number 2 | August 1968 | Pages 53-54
Technical Paper and Note | doi.org/10.13182/NT68-A27949
Articles are hosted by Taylor and Francis Online.
In a loss-of-coolant accident in which gross melting of the core is not prevented, a melt-through of the bottom of the containment vessel may be averted by an unenriched UO2 barrier beneath the reactor vessel. Such a barrier would melt only very slowly because the fuel mass from the core would tend to float on top of the barrier, and the melting front in the barrier could advance only as a result of heat conducted through the previously melted part of the barrier. This gives rise to a melting front advance which varies as mt½, where m is a constant determined by the material properties. A calculation indicates that the rate of penetration of the melting front is more than an order of magnitude less if the core mass floats on the barrier, than if the core mass is more dense than the barrier, and tends to displace it and sink to the melting interface.