ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
K. Wolfsberg, W. R. Daniels, G. P. Ford, E. T. Hitchcock
Nuclear Technology | Volume 3 | Number 9 | September 1967 | Pages 568-574
Technical Paper and Note | doi.org/10.13182/NT67-A27941
Articles are hosted by Taylor and Francis Online.
The study of heavy elements produced in underground thermonuclear explosions requires the separation of trace quantities of actinide elements from several hundred to several thousand grams of fused rock containing the products from about 1017 fissions. After the sample is pulverized and dissolved in HNO3, HClO4, and HF, fluoride insoluble salts are precipitated. These are redissolved, and the actinides and lanthanides are extracted into tributyl phosphate from a solution that is highly salted with Al(NO3)3. The actinides and lanthanides are back-extracted intc water and then extracted into di-2-ethylhexyl phosphoric acid. Recovery from di-2-ethylhexyl phosphoric acid is achieved by esterification with decanol. The actinides are separated from the lanthanides by elution from a cation-exchange resin column with an ethanol-hydrochloric acid solution. Individual actinides are separated by elution from a cation-exchange resin column with α-hydroxyisobutyric acid.