ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Radiant signs contract on microreactors for the military
California-based microreactor developer Radiant Industries has announced the signing of what it calls “the first-ever agreement” to deliver a mass-manufactured nuclear microreactor to a U.S. military base. The contract was signed with the Department of Defense’s Defense Innovation Unit (DIU) and the U.S. Air Force as part of the Advanced Nuclear Power for Installations (ANPI) program.
P. A. Nelson, D. K. Butler, M. G. Chasanov, D. Meneghetti
Nuclear Technology | Volume 3 | Number 9 | September 1967 | Pages 540-547
Technical Paper and Note | doi.org/10.13182/NT67-A27935
Articles are hosted by Taylor and Francis Online.
The characteristics of fast reactors having molten fuels consisting of uranium and plutonium trichlorides dissolved in alkali chlorides and alkaline-earth chlorides were studied. The study included considerations of the physical and chemical properties of the fuel, the heat-removal problems, and neutronic characteristics for three types of chloride reactors: a homogeneous reactor and two internally cooled reactors. Optimization of the core size for 1000-MW(e) reactors resulted in a core volume of 10 000 liters for each type. These reactors have the favorable characteristics (even for natural chlorine) of high breeding ratio, large negative temperature coefficients of reactivity, and low fuel-cycle costs. However, the unattractive characteristics of large plutonium inventory, large volume, complex design, and container material problems indicate that a sizeable program to develop chloride-fueled reactors