ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
G. W. Keilholtz, R. E. Moore
Nuclear Technology | Volume 3 | Number 11 | November 1967 | Pages 686-691
Technical Paper and Note | doi.org/10.13182/NT67-A27904
Articles are hosted by Taylor and Francis Online.
The effects of neutron irradiation on poly crystalline α-alumina were investigated. The specimens were translucent solid cylinders of 99.8% of theoretical density with an average grain size of 25 μm. Fast (> 1 MeV) neutron exposures ranged from 0.6 to 5.2 × 1021 n/cm2 where the thermal-to-fast flux ratio varied from 1.6 to 1.1. Temperatures of the specimens were calculated to range from 300 to 600°C. Grain-boundary separation was observed when the neutron dose (> 1 MeV) was approximately 2.3 × 1021 n/cm2, and it became progressively worse with increasing neutron dose. Extensive fracture was observed in specimens exposed to doses above 3 × 1021 n/cm2 (> 1 MeV), but there was virtually no fracturing of samples exposed to doses less than 2 × 1021 n/cm2. Volume of the specimens increased as the neutron dose increased, but the volume as calculated from the lattice parameters, which increased in specimens exposed to a neutron dose of 0.7 × 1021 n/cm2, decreased slightly with additional radiation. Above 0.7 × 1021 n/cm2, the a parameter remained constant while the c parameter decreased. It is suggested that grain-boundary separation, which causes the fracturing of the specimens, is produced by an anisotropic expansion of the crystals produced by defect agglomerates which are too large to affect the lattice parameter measurements.