ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
Thomas F. Plunkett
Nuclear Technology | Volume 3 | Number 3 | March 1967 | Pages 178-186
Technical Paper and Note | doi.org/10.13182/NT67-A27872
Articles are hosted by Taylor and Francis Online.
The gaseous-core or cavity nuclear reactor is of significant interest for advanced nuclear propulsion because of its high performance capabilities compared to solid-core nuclear and chemical propulsion concepts. By removal of temperature limitations associated with solid materials in the core and by use of radiative transfer as the principal mode of energy transfer from the fuel to the propellant, propellant exhaust temperatures of 7000°K and specific impulses in excess of 2000 sec can be obtained. This article describes a detailed nuclear analysis of a gaseous-core nuclear rocket engine in which the spatial effects of the cavity liner material, coolant tubes, and structural components, as well as neutron streaming out of propellant inlet and outlet (nozzle) passages, are considered. Calculational methods were evaluated, and multigroup diffusion theory was selected. Two-dimensional diffusion and transport calculations are compared for finite cylindrical cavity reactors having both central and annular nozzle exhausts. A parameter study was made of fuel and reflector materials, core and reflector dimensions, and temperature effects. Significant results of this study are: 1) extremely high fuel loadings are required for a propulsion reactor; 2) substantial preheating of the reflector will be required for startup; and 3) uranium-233 has significant advantages over 235U and 239Pu as fuel in gaseous-core nuclear rockets.