ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
John W. Prados, J. L. Scott
Nuclear Technology | Volume 3 | Number 8 | August 1967 | Pages 488-494
Technical Paper and Note | doi.org/10.13182/NT67-A27780
Articles are hosted by Taylor and Francis Online.
The Prados-Scott model for coated-particle behavior has been modified to include the effects of irradiation-induced creep on the stress-strain history of pyrolytic-carbon coatings. Calculations are performed in a stepwise fashion, with double trial-and-error iterations required for each time (or fluence) increment. Lack of accurate information on the mechanical behavior of pyrolytic carbons under irradiation still limits the quantitative applicability of the results; however, the computational sequence has been designed to permit simple updating of mechanical behavior subroutines as more reliable data are obtained. Using the best available creep information, we found that the performance of typical pyrolytic-carbon-coated particles is significantly improved by creep under conditions of irradiation which will obtain in advanced high-temperature gas-cooled reactors. On the other hand, with the high burnup rates and low fast fluences characteristic of most coated-particle proof tests, the effects of creep are small and are likely to be undetectable. In such cases, an elastic model can be used effectively to predict failure.