ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Ryusuke Kobayashi, Carl H. Distenfeld, Dennis E. Ferguson
Nuclear Technology | Volume 87 | Number 2 | October 1989 | Pages 461-469
Technical Paper | TMI-2: Health Physics and Environmental Release / Nuclear Safety | doi.org/10.13182/NT89-A27738
Articles are hosted by Taylor and Francis Online.
Forced circulation during and after the Three Mile Island Unit 2 accident distributed reactor fuel into the systems and components of the reactor building (RB) and the auxiliary/fuel handling building (AFHB). Most of the fuel remained in the reactor coolant system and the RB, with smaller amounts continuing to the AFHB systems. Efforts began in 1985 to determine the location and amounts of ex-vessel fuel debris. An overview of the fuel characterization measurements in the RB external to the reactor vessel is presented. The fuel characterization was performed using six methods: neutron assay, alpha assay, sampling, visual inspection, gamma spectrometry, and gross gamma radiation measurements. The method used for the best estimate for a particular region depended largely on the environment and often employed a combination of methods. Using these methods, the minimum and maximum amounts offuel were estimated for each ex-vessel location in the RB. Estimates indicate that between 76.2 and 215.1 kg of reactor fuel currently remain in the RB ex-vessel areas.