ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
Ryusuke Kobayashi, Carl H. Distenfeld, Dennis E. Ferguson
Nuclear Technology | Volume 87 | Number 2 | October 1989 | Pages 461-469
Technical Paper | TMI-2: Health Physics and Environmental Release / Nuclear Safety | doi.org/10.13182/NT89-A27738
Articles are hosted by Taylor and Francis Online.
Forced circulation during and after the Three Mile Island Unit 2 accident distributed reactor fuel into the systems and components of the reactor building (RB) and the auxiliary/fuel handling building (AFHB). Most of the fuel remained in the reactor coolant system and the RB, with smaller amounts continuing to the AFHB systems. Efforts began in 1985 to determine the location and amounts of ex-vessel fuel debris. An overview of the fuel characterization measurements in the RB external to the reactor vessel is presented. The fuel characterization was performed using six methods: neutron assay, alpha assay, sampling, visual inspection, gamma spectrometry, and gross gamma radiation measurements. The method used for the best estimate for a particular region depended largely on the environment and often employed a combination of methods. Using these methods, the minimum and maximum amounts offuel were estimated for each ex-vessel location in the RB. Estimates indicate that between 76.2 and 215.1 kg of reactor fuel currently remain in the RB ex-vessel areas.