ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Ho Nieh nominated to the NRC
Nieh
President Trump recently nominated Ho Nieh for the role of commissioner in the Nuclear Regulatory Commission through the remainder of a term that will expire June 30, 2029.
Nieh has been the vice president of regulatory affairs at Southern Nuclear since 2021, though he is currently working as a loaned executive at the Institute of Nuclear Power Operations, where he has been for more than a year.
Nieh’s experience: Nieh started his career at the Knolls Atomic Power Laboratory, where he worked primarily as a nuclear plant engineer and contributed as a civilian instructor in the U.S. Navy’s Nuclear Power Program.
From there, he joined the NRC in 1997 as a project engineer. In more than 19 years of service at the organization, he served in a variety of key leadership roles, including division director of Reactor Projects, division director of Inspection and Regional Support, and director of the Office of Nuclear Reactor Regulation.
Paul J. Babel, Raymond E. Lancaster, Carl H. Distenfeld
Nuclear Technology | Volume 87 | Number 2 | October 1989 | Pages 450-456
Technical Paper | TMI-2: Health Physics and Environmental Release / Radioactive Waste Management | doi.org/10.13182/NT89-A27736
Articles are hosted by Taylor and Francis Online.
Sample and measurement data used to determine the quantity of radioactive material in the concrete walls and floor of the Three Mile Island Unit 2 (TMI-2) reactor building (RB) basement are given. The layout of the RB basement, types of concretes and surface coatings, measurement methods, and final assessment are described. It was found that the radioactive material (primarily 137Cs) did not significantly penetrate into poured concrete walls and floors, but did penetrate completely through concrete block. The activity distribution in the walls varied strongly with elevation above the floor. Of the estimated 975 (±25%) TBq (26400G) in the RB basement, ∼72% is contained in the concrete block, ∼23% in the low-compression-strength concrete walls, ∼2% in the low-compression-strength concrete floor, and ∼3% in the high-compression-strength walls.