ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
Type One Energy, TVA ink LOI in development of fusion power in Tennessee
The Tennessee Valley Authority has issued a letter of intent to fusion energy start-up Type One Energy regarding the utility’s interest in the potential deployment of Type One Energy’s fusion power plant technology at TVA’s former Bull Run fossil plant site once it is commercially ready.
Paul E. Ruhter, Wilbert G. Zurliene
Nuclear Technology | Volume 87 | Number 2 | October 1989 | Pages 361-367
Technical Paper | TMI-2: Health Physics and Environmental Release / Nuclear Safety | doi.org/10.13182/NT89-A27726
Articles are hosted by Taylor and Francis Online.
Although the radiological conditions following the Three Mile Island Unit 2 accident were extraordinary, those that had a potential impact on personnel were largely confined to the auxiliary and fuel handling buildings. The most significant pathway was the letdown, makeup, and purification system. Dose rates in some locations in the auxiliary and fuel handling buildings were in excess of 3 mSv/s (1000 R/h) during the first few days following the accident. The dose rates decreased after 3 to 4 days and stabilized after ∼1 week. Airborne radioactivity levels were initially due to the release of noble gases, and subsequently due to resuspension of surface contamination. During the first month, the mixture of fission products in the reactor coolant changed from mostly cesium to about equal amounts of strontium and cesium. This created some very high beta radiation levels. The significant strontium levels caused the contamination control limit to be reduced to one-half of the preaccident limit.