ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
R. H. Fillnow, P. R. Bengel, David L. Giefer
Nuclear Technology | Volume 87 | Number 3 | November 1989 | Pages 624-630
Technical Paper | TMI-2: Remote Technology and Engineering / Nuclear Safety | doi.org/10.13182/NT89-A27714
Articles are hosted by Taylor and Francis Online.
The postaccident Three Mile Island Unit 2 (TMI-2) plant was a maze of contaminated areas with varying levels of radiation. Several cubicles in the auxiliary building could not be entered for survey, much less to decontaminate. The containment basement was the most contaminated region with radiation fields up to 1100 R/h. The thousands of curies of cesium and strontium contained in the loose debris, sediment, and water made the basement a difficult region to decontaminate. To characterize and decontaminate these hazardous areas, cleanup personnel were forced to consider the use of remotely controlled (robotic) equipment. The remote equipment program at TMI-2, driven by need, resulted in considerable reduction of radiation exposure to plant personnel. The remotely operated devices developed under this program and the general criteria formulated for each design are described.