ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
R. H. Fillnow, P. R. Bengel, David L. Giefer
Nuclear Technology | Volume 87 | Number 3 | November 1989 | Pages 624-630
Technical Paper | TMI-2: Remote Technology and Engineering / Nuclear Safety | doi.org/10.13182/NT89-A27714
Articles are hosted by Taylor and Francis Online.
The postaccident Three Mile Island Unit 2 (TMI-2) plant was a maze of contaminated areas with varying levels of radiation. Several cubicles in the auxiliary building could not be entered for survey, much less to decontaminate. The containment basement was the most contaminated region with radiation fields up to 1100 R/h. The thousands of curies of cesium and strontium contained in the loose debris, sediment, and water made the basement a difficult region to decontaminate. To characterize and decontaminate these hazardous areas, cleanup personnel were forced to consider the use of remotely controlled (robotic) equipment. The remote equipment program at TMI-2, driven by need, resulted in considerable reduction of radiation exposure to plant personnel. The remotely operated devices developed under this program and the general criteria formulated for each design are described.