ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Daniel S. Williams, John C. Rommel, Raymond L. Murray
Nuclear Technology | Volume 87 | Number 4 | December 1989 | Pages 1134-1144
Late Paper | TMI-2: Decontamination and Waste Management / Nuclear Safety | doi.org/10.13182/NT89-A27705
Articles are hosted by Taylor and Francis Online.
Criticality safety and adherence to established keff criteria had to be demonstrated for the various defueling operations performed at Three Mile Island Unit 2. This included determination of adequate neutron poisoning for the reactor coolant system (RCS), design of the defueling canisters, the canister-handling devices, the storage racks, and the shipping cask. Tools, equipment, and support systems required for the defueling operation also had to adhere to criticality safety requirements. The keff criterion used to define the poison concentration for the RCS was ≤0.99. This criterion, coupled with an extremely conservative core model, led to a poison concentration that provided an appropriate margin of safety. To define the fixed poison requirements for the defueling canisters, a keff criterion of <0.95 was used for both single canisters and arrays in all credible configurations. For all design analyses, bounding assumptions were made. For each set of analyses performed, the evaluation of keff included an allowance to account for uncertainties in the calculated values. A criticality benchmark study was completed to determine appropriate computer code bias values for both the RCS and canister analyses. A lenticular model, which included the entire fuel inventory, was used to define the RCS boron concentration. Based on the analysis by Oak Ridge National Laboratory, a boron concentration of 4350 ppm was required to meet the keff criterion. Babcock and Wilcox Company performed the design analyses for the defueling canisters. Each type of canister was explicitly modeled and analyzed using the KENO code. The design requirements mandated that the diameter of the canisters be larger than critically safe dimensions; thus, fixed boron poisoning was utilized. The fixed poison used in the canisters was either Boral plates or stacked sintered boron carbide pellets. The quantity and location of the canister poison was determined based on keff limits and operational criteria for the canisters. Analyses were also performed to ensure that keff was ≤0.95 for canisters contained within the canister-handling devices.