ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Michael D. Pavelek II, Wayne Underhill, F. Lee Bozorgi, Joseph F. Boudreaux
Nuclear Technology | Volume 87 | Number 4 | December 1989 | Pages 1122-1133
Late Paper | TMI-2: Decontamination and Waste Management / Nuclear Safety | doi.org/10.13182/NT89-A27704
Articles are hosted by Taylor and Francis Online.
In 1980, the Three Mile Island Unit 2 (TMI-2) project team evaluated teleoperators and robotic devices to participate in the accident recovery work. Due to the magnitude of radiation levels present and the high cost of protective clothing and equipment, teleoperators were important at TMI-2. Safe and efficient cleanup of the facility was the primary objective of the GPU Nuclear Corporation (GPU). With this goal in mind, two classes of teleoperators were deployed. The first, a Hodges remotecontrolled mobile manipulator (RCMM), was a small and simple teleoperator equipped with an arm having three degrees of freedom. This permitted pick-andplace operations and also allowed control of water flushing devices. The RCMM was evaluated as being capable of reducing contamination of exposure levels of the auxiliary building (AB) cubicles with simple modifications. The GPU-Bechtel National team strived to improve the reliability and operating capability of the RCMM; following the modification and testing period, the RCMM was deployed and operated in two highly contaminated cubicles in the AB basement. Upon completion of the activities, it was determined that the RCMM vision and drive system had to be improved. The modification required to deploy the RCMM in a reliable manner was not practical. Using the experience gained from the RCMM deployment, the project team worked closely with Carnegie-Mellon University, which produced the second class of teleoperators, the remote reconnaissance vehicle (RR V). The RRV provided the capability to transport several types of remotely controlled tooling and monitoring equipment into the highly contaminated reactor building basement at TMI-2. Actual operations conducted with the RRVs and another of the second class of teleoperators, Louie-2, during the TMI-2 recovery project are described.